Reg. No.:	

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 2002

B.E. / B.Tech. DEGREE SUPPLEMENTARY EXAMINATIONS - FEB. / MAR. 2020

Third Semester

Electrical and Electronics Engineering

U15MA304 – COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL

EQUATIONS

(Common to Electronics and Communication Engineering & Biotechnology)
(Regulation 2015)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

PART - A

 $(10 \times 2 = 20 \text{ Marks})$

- 1. Verify whether $f(z) = \overline{z}$ is analytic or not?
- 2. Find the invariant points of the transformation $w = \frac{z-1}{z+1}$.
 - 3. Evaluate: $\int_C \frac{z}{z-2} dz$, where C is the circle |z| = 1.
 - 5 State Cauchy's Residue theorem.
 - 5. State Dirichlet's conditions for Fourier series.
 - 6. Determine the value of a_n in the Fourier series expansion of $f(x) = x^3$ in $-\pi < x < \pi$.
 - 7. Find the Fourier cosine transform of $f(x) = e^{-ax}$ (a > 0).
 - 8. Define Fourier transform pair.
 - 9. Form a p.d.e by eliminating the arbitrary constants a and b from $z = ax^2 + by^2$
 - 10. Classify the p.d.e $3u_{xx} + 10u_{xy} + 3u_{yy} = 0$.

 $(5 \times 16 = 80 \text{ Marks})$

- 11. a) i. If f(z) is an analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$ (8)
 - ii. Show that $\frac{1}{2}\log(x^2+y^2)$ is harmonic. Determine the analytic function. Find also its Conjugate (8)
 - b) i. Find the bilinear transformation which maps the points $z=0,1,\infty$ into w=i,1,-i respectively. (8) ii. Find the image of |z-2i|=2 under the transformation
 - ii. Find the image of |z 2i| = 2 under the transformation $w = \frac{1}{z}$. (8)
- 12. a) i. Evaluate: $\int_C \frac{z}{(z-1)(z-2)^2} dz$ where c is the circle $|z-2| = \frac{1}{2}$, by using Cauchy's integral formula. (8)
 - ii. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ as a Laurent's series valid in the region 1 < |z| < 3 (8)
 - b) i. Using contour integration, evaluate $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$ (8)
 - ii. Evaluate $\int_{c} \left(\frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} \right) dz, \quad \text{where } c \text{ is } |z| = 3.$ (8)
- 13. a) Find the Fourier series for the function $f(x) = x(2\pi x)$ in $(0,2\pi)$ and hence deduce that sum of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.
 - b) i. Find the half range sine series of $f(x) = lx x^2 in(0, l)$ (8)
 - ii. Find the Fourier series upto second harmonic for the following data: (8)

х	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0

14. a) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ and hence evaluate

i.
$$\int_0^\infty \left(\frac{\sin^4 t}{t^4}\right) dt$$

ii.
$$\int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt$$

(OR)

- b) i. Prove that $e^{-x^2/2}$ is a self-reciprocal under Fourier transform (8)
 - ii. Use transform method to evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}$. (8)
- 15. a) A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by y(x,0) = K(lx-x²). It is released from rest from this position. Find the expression for the displacement at any time 't'.

(OR)

b) A rod 30 cm long has its ends A and B kept at 20° and 80° respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0° and kept so. Find the resulting temperature function u(x,t) taking x=0 at A.

